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Abstract 

The electron transfer that occurs in the insertion of potassium in CuFeS 2 has been analyzed by two different techniques. The 
binding energies of the core electrons of CuFeS2, KCuFeS 2 and K, CuFeS 2 (x --~ 0) has been studied by XPS experiments, while 
the band structure of these phases has been investigated by tight-binding EH calculations. Both experimental and numerical 
results strongly support the belief that the insertion reaction induces a redox process in the starting CuFeS2, by which the Fe 3+ 
ions are reduced to Fe 2+. Upon removal of the potassium ions, the Fe 2+ ions are oxidized to Fe 3+. Copper atoms do not 
participate in the redox reaction. 
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1. Introduction 

The reaction of potassium with chalcopyrite, 
CuFeS2, or with eskeborite, CuFeSe 2, yields new 
products with formula KCuFeX 2 (X = S or Se) which 
crystallize in ThCr2Si 2 [1]. Following a first publi- 
cation on their preparation and crystal structure [2], 
we report  in this paper  the band structure calculations 
based on an extended Htickel (EH) hamiltonian, and 
the results of XPS experiments in order  to evaluate 
the electronic factors involved in the reaction and to 
get information about the oxidation states of Cu and 
Fe in the products and the oxidation state changes of 
these elements during the inclusion and extraction 
reactions of the alkali metal ion on the CuFeS 2 matrix. 

2. Experimental details 

The intercalation compound KCuFeS 2 has been 
synthesized and its crystal structure solved, as de- 
scribed in a previous work [2]. The homogenei ty  of 
the product  was monitored by XRD. The oxidative 
extraction of the potassium ion from KCuFeS 2 to yield 
KxCuFeS 2 (x ~ 0) was undertaken following the meth- 
od described by Murphy et al. [3], or with a 5:95 
H 2 0 : E t O H  solution. Both procedures were carried 
out under Ar atmosphere. 
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The XPS spectra of all studied compounds were 
recorded on a Pe rk in -E lmer  spectrometer.  Mg Ka  
X-rays were used for all the measurements.  Powder 
samples were pressed on an indium foil and then 
mounted on an aluminum sample holder. Crystals 
were fixed on the holder with an organic glue. All the 
samples were sputtered with an Ar beam before 
recording the spectra. The binding energies were 
referred to the C(ls) binding energy (248.8 eV) of the 
carbonaceous contaminant of the samples. This pro- 
cedure has been demonstrated to furnish reproducible 
results [4]. The binding energies were determined by 
bisecting the curves in the vicinities of the maxima. 

3. Band structure calculations 

We have studied the 2-D band structure associated 
with a [CuFeS2] -1 layer of KCuFeS 2 by means of 
extended Hiickel tight-binding calculations [5-9] .  We 
have chosen for all calculations a 2-D square supercell 
with lattice parameter  a~/2 (a = 3.837 .&) with the (Cu, 
Fe) atoms distributed in the tetrahedral  sites with an 
ordering pattern that produces chains of Cu and Fe 
atoms. The extended Htickel parameters used in the 
calculations are given in Table 1. These values were 
taken from the literature [10-11].  The off-diagonal 
matrix elements of the hamiltonian were evaluated by 
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Table 1 
Extended Htickel parameters .  Hii are diagonal matrix e lements  of  
the EH Hamil tonian,  s ¢, are the Slater exponents ,  and c, are the 
expansion coefficients 

A t o m  Orbital Hj~ (eV) ~ ~2 c~ c 2 

S 3s -20 .00  2.122 
3p -13 .30  1.827 

Cu 4s -11 .40  2.200 
4p -6 .06  2.200 
3d 14.00 5.950 

Fe ,Is -9 .10  1.900 
4p 5.32 1.900 
3d -12 .60  5.350 

2.30 0.5933 0.5744 

2.00 0.5505 0.6260 

means of a weighted formula [12]. A set of 120 k 
points in the irreducible part of the Brillouin zone was 
used for the density of state (DOS) calculations [13]. 
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Fig. 2. X-Ray photoelectron spect rum of Fe(2p): curve (a), CuFeS2; 
curve (b), KxCuFeS 2 (x ~ 0 ) ;  curve (c), KCuFeS2 after bombard-  
ment  with argon ions. 

4. Results and discussion 

The ,;pectra obtained from the photoelectron- 
spectroscopic measurements are displayed in Figs. 1 
and 2. The binding energies derived from these spectra 
are listed in Table 2. 

The observed values of the binding energies for 
Cu(2p_w2) , Cu(2pl/2), Fe(2p3/2), Fe(2pl/2 ) of the starting 
chalcopyrite, CuFeS2, are in good agreement with the 
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Fig. 1. X-Ray photoelectron spec t rum of Cu(2p): curve (a), CuFeS¢  
curve (b), KxCuFeS 2 ( x ~ 0 ) ;  curve (c), KCuFeS 2 after bombard-  
ment  with argon ions. 

earlier work of Brion [14]. The full width at half 
maximum (FWHM) calculated for Cu(2P3/2 ) is 1.8 eV. 
This value is also in good agreement with the reported 
value [15], and confirms that only Cu +1 is present in 
the parent CuFeS 2. Chalcopyrite has the zinc blende 

+a F e 3 +  structure, but with ordering of the Cu , ions 
within (001) layers [16]. 

In KCuFeS 2 and KxCuFeS 2 (x--~0) phases, the 
binding energies of the Cu(2p3/2 ) and Cu(2pl/2) levels 
are nearly the same as those found in chalcopyrite. 
Therefore, we can conclude that upon the inclusion 
and removal of the potassium ion in the CuFeS 2 
starting material, the formal oxidation state of copper 
does not change. Because the value for S(2p) binding 
energy is nearly that for S 2-, it seems plausible to 
assume that such is in fact its valence in all the three 
phases. This oxidation state for sulfur is consistent 
with the lack of S-S bonding: it is worth noting that 
S-S distances along the c axis (3.994 A) as well as 
parallel to the (001) plane (3.837 .~) are longer than a 
S-S single bond [237]. The binding energy values 
corresponding to Fe(2p3/2 ) and Fe(2plj2 ) show a shift 
of about 0.8 eV for Fe(2p3/2 ) and about 2.1 eV for 
Fe(2Pl/2 ) when K is inserted in CuFeS 2. After the 
removal of the alkali metal, the binding energies of 
Fe(2p3/2 ) and Fe(2pl/2 ) core electrons show values 
which are similar to those corresponding to the start- 
ing CuFeS 2. We recall that CuFeS 2 has the zinc blende 

Table 2 
Binding energy (eV) of core electrons 

Compound  Cu(2p3/2) F W H M  Cu(2p~2)  F W H M  Fe(2p3,2) Fe(2p~.,2) S(2p) 

CuFe 2 932.5 1.8 952.5 2.4 711.3 724.8 162.0 
KCuFeS 2 932.6 1.8 952.6 2.3 710.5 722.7 162.2 
KxCuFeS 2 932.4 1.8 952.4 2.4 711.2 724.8 162.2 
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Fig. 3. Density of states of the [CuFeS2] t single layer (continuous 
line), and contributions of the Fe AOs (broken line) and Cu AOs 
(dotted line). The Fermi energy is indicated by the label E F. 

-9 

the XPS experiments upon insertion and removal of K 
atoms in chalcopyrite. These results are comparable 
with those found for the other alkali metal -copper-  
iron sulfides, LiCuFeS z and NaCuFeS 2 [18]. 

Finally, it is worth noting that the arrangement 
observed in KCuFeS 2, analogous to that of ThCr2Si 2, 
is rather scarce for d 1° transition metals. 
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